

PRODUCT/PROCESS CHANGE NOTIFICATION

PCN APG-BAD/12/7432 Dated 10 Sep 2012

VIPower M03 / M03.5 in SOT-223: Assembly Transfer from Carsem to Fujitsu Subcontractor

Table 1. Change Implementation Schedule

Forecasted implementation date for change	30-Nov-2012			
Forecasted availability date of samples for customer	03-Sep-2012			
Forecasted date for STMicroelectronics change Qualification Plan results availability	03-Sep-2012			
Estimated date of changed product first shipment	10-Dec-2012			

Table 2. Change Identification

Product Identification (Product Family/Commercial Product)	see enclosed list	
Type of change	Package assembly location change	
Reason for change	Logistic	
Description of the change	Please be informed that VIPower M03 / M03.5 products housed in SOT-223 will be transferred from assembly Carsem to Fujitsu Subcontractor. Due to all the products will be transferred in lead-free configuration only, products in lead-present configuration will be converted as well according to PCN APG-AED/10/5437 dated April 1, 2010 (Passive Pad Implementation) already communicated. See enclosed reference table of new part numbers.	
Change Product Identification	Letter code "G" on plant code traceability	
Manufacturing Location(s)	1]Sc Carsem M - Malaysia	

47/.

Table 3. List of Attach	nments
-------------------------	--------

Customer Part numbers list	
Qualification Plan results	

Customer Acknowledgement of Receipt	PCN APG-BAD/12/7432
Please sign and return to STMicroelectronics Sales Office	Dated 10 Sep 2012
□ Qualification Plan Denied	Name:
□ Qualification Plan Approved	Title:
	Company:
□ Change Denied	Date:
□ Change Approved	Signature:
Remark	
i e e e e e e e e e e e e e e e e e e e	

47/.

DOCUMENT APPROVAL

Name	Function
Liporace, Nicola	Marketing Manager
Nicoloso, Riccardo	Product Manager
Minerva, Francesco	Q.A. Manager

A7/.

Product Change Notification

VIPower M03/M03.5 in SOT-223: Transfer from assembly plant Carsem to Assembly plant Fujitsu.

INVOLVED P&L FAMILY: 30

WHAT:

Assembly of VIPower M03/M03.5 products housed in SOT-223 will be transferred from subcontractor Carsem (Malaysia) to Fujitsu (China).

WHY:

Logistic.

WHO:

All the Customers using below list of products.

Due to all the products will be transferred in lead-free configuration only, products in lead-present configuration will be converted as well according to PCN APG-AED/10/5437 (Passive pad implementation) dated April 1, 2010 already communicated. Below the reference new part numbers.

	CARSEM			FUJITSU	
Silicon Line	Current Part Number		Silicon Line	New Part Number	Notes
VN73*	09399028-E	->	VNL6	VNN1NV04PTR-E	
VN73*	9399028	->	VNL6	VNN1NV04PTR-E	
VN73*	VNN1NV0413TR	->	VNL6	VNN1NV04PTR-E	
VN79*	28006923	->	VNS2	VNN7NV04PTR-E	Passive pad silicon
VN79*	VNN7NV0413TR	->	VNS2	VNN7NV04PTR-E	versions according to PCN
VN84*	VNN3NV0413TR	->	VNS6	VNN3NV04PTR-E	5437 issued in April 2010
VNL6	VNN1NV04PTR-E	->	VNL6	VNN1NV04PTR-E	
VNS2	VNN7NV04PTR-E	->	VNS2	VNN7NV04PTR-E	
VNS6	VNN3NV04PTR-E	->	VNS6	VNN3NV04PTR-E	

^{*}No Passive Pad Silicon Version

WHEN:

Tentative date of change is: December 2012

Qualification report included to this PCN (RR002612CT2235).

WHERE:

Carsem (Malaysia) sending plant - Fujitsu (China) receiving plant.

SOT223 assembly process qualification in NANTONG FUJITSU subcontractor

General Informations

Commercial Product VNN7NV04P-E

Product Line VNS2

Silicon process technology VIPower M0 3.5

Package SOT223

Locations

Diffusion fab location ST AMK6 Ang Mo Kio

(Singapore)
Subcon Nantong

Assembly plant location

Test plant location

Subcon National Fujitsu (China)

ST Shenzhen (China)

Reliability lab location ST Catania (Italy)

General Informations

Commercial Product VNN3NV04P-E

Product Line VNS6

Silicon process technology VIPower M0_3.5

Package SOT223

Locations

Assembly plant location

ST CT6 Catania (Italy)
Subcon Nantong
Fujitsu (China)

Test plant location ST Shenzhen (China)

Reliability lab location ST Catania (Italy)

General Informations

Commercial Product VNN1NV04P-E

Product Line VNL6

Silicon process technology VIPower M0_3.5

Package SOT223

Locations

Diffusion fab location

ST CT6 Catania (Italy)

Subcon Nantong

Subcon Nantong

Fujitsu (China)

Test plant locationST Shenzhen (China)Reliability lab locationST Catania (Italy)

Author:

F. CERAULO Product Qualification Eng APG Q&R Catania

Reliability and electrical test executed by:

G. Foti Rel. Eng.

IMS Rel Dept. - APG Support

RR002612CT2235 Date of issue: August 3rd 2012 **Page: 1 of 13**

Table of contents				
Section	Pag	Content		
1	3	Reliability evaluations overview		
1.1	3	Objectives		
1.2	3	Results		
2	4	Traceability		
3	6	VNN7NV04P-E - Devices characteristics		
3.1	6	Generalities		
3.2	7	Pins connection		
3.3	7	Blocks diagram		
3.4	7	Bonding diagram		
4.0	8	VNN3NV04P-E - Devices characteristics		
4.1	8	Generalities		
4.2	9	Pins connection		
4.3	9	Blocks diagram		
4.4	9	Bonding diagram		
5.0	10	VNN1NV04P-E - Devices characteristics		
5.1	10	Generalities		
5.2	11	Pins connection		
5.3	11	Blocks diagram		
5.4	11	Bonding diagram		
5.5	12	Package outline / Mechanical data		
6	13	Reliability qualification plan and results – Summary table		

RR002612CT2235 Date of issue: August 3rd 2012 **Page: 2 of 13**

- 1. Reliability evaluations overview

1.1 Objectives

Aim of this report is to present the results of the reliability evaluations performed to qualify the subcontractor NANTONG FUJITSU (China) as new location to assembly in package **SOT223** the VIPower products designed in M0_3.5 technology.

The products chosen as test vehicles are: **VNN7NV04P-E** (VNS2 as ST internal code) and the **VNN1NV04P-E** (VNL6 as ST internal code) diffused in ST AMK6 Ang Mo Kio (Singapore), the **VNN3NV04P-E** (VNS6 as ST internal code) diffused in ST CT6 Catania (Italy).

The qualification was based on 3 lots, one lot per vehicle, according to the **AEC_Q100 Rev.G** specification the following tests were performed: Preconditioning (PC), Temperature Humidity Bias (THB), Autoclave (AC), Thermal Cycling (TC), Power Temperature Cycling (PTC), High Temperature Storage (HTS) as Accelerated Environment Stress (test Group A); High Temperature Operative Life (HTOL) as Accelerated Lifetime Simulation (test Group B); Wire Bond Pull/Shear tests (WBP, WBS), Solderability (SD), Physical Dimension (PD) as Package Assembly Integrity (test Group C); Gate Leakage (GL) as Electrical Verification (test Group E).

1.2 Results

All reliability tests have been completed with positive results, neither functional nor parametric rejects were detected at final electrical testing.

Based on the overall positive results we consider the products qualified from a reliability point of view.

RR002612CT2235 Date of issue: August 3rd 2012 **Page: 3 of 13**

- 2. Traceability

VNN7NV04P-E (VNS2)

Wafer fab information		
Wafer fab manufacturing location	ST AMK6 Ang Mo Kio (Singapore)	
Wafer diameter (inches)	6	
Silicon process technology	VIPower M0_3.5	
Die finishing back side	Ti-Ni-Au	
Die size (micron)	2540 x 2130	
Metal levels / materials	1 level / AlSi (3.2 μm)	
Die finishing front side	SiN/POLYIMIDE	
Diffusion Lots # 6110J4T		

Assembly Information		
Assembly plant location	SC - NANTONG FUJITSU (China)	
Package description	SOT-223	
Molding compound	SUMITOMO EMEG600F	
Wires bonding materials/diameters	Au 2.0mils	
Die attach material	SOFT SOLDER DIE ATTACH 95.5Pb/2Sn/2.5Ag	
Assembly Lots #	Lot1: GK22012101	

Final Testing Information		
Electrical testing manufacturing location	ST Shenzhen (China)	

VNN3NV04P-E (VNS6)

Wafer fab information		
Wafer fab manufacturing location	ST CT6 Catania (Italy)	
Wafer diameter (inches)	6	
Silicon process technology	VIPower M0_3.5	
Die finishing back side	Ti-Ni-Au	
Die size (micron)	2540 x 2130	
Metal levels / materials	1 level / AlSi (3.2 µm)	
Die finishing front side	SiN/POLYIMIDE	
Diffusion Lots #	3204134	

Assembly Information				
Assembly plant location SC - NANTONG FUJITSU (China)				
Package description SOT-223				
Molding compound	SUMITOMO EMEG600F			
Wires bonding materials/diameters Au 2.0mils				
Die attach material SOFT SOLDER DIE ATTACH 95.5Pb/2Sn/2.5Ag				
Assembly Lots # Lot1: GK21917V01				

Final Testing Information		
Electrical testing manufacturing location	ST Shenzhen (China)	

RR002612CT2235 Date of issue: August 3rd 2012 **Page: 4 of 13**

VNN1NV04P-E (VNL6)

Wafer fab information			
Wafer fab manufacturing location ST AMK6 Ang Mo Kio (Singapore)			
Wafer diameter (inches)	6		
Silicon process technology	VIPower M0_3.5		
Die finishing back side	Ti-Ni-Au		
Die size (micron)	1710 x 1520		
Metal levels / materials	1 level / AlSi (3.2 µm)		
Die finishing front side	SiN/POLYIMIDE		
Diffusion Lots #	6811LPK		

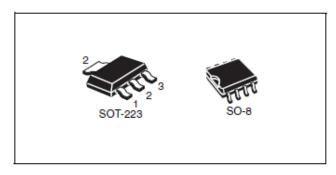
Assembly Information				
Assembly plant location	SC - NANTONG FUJITSU (China)			
Package description	SOT-223			
Molding compound SUMITOMO EMEG600F				
Wires bonding materials/diameters Au 2.0mils				
Die attach material SOFT SOLDER DIE ATTACH 95.5Pb/2Sn/2.5Ag				
Assembly Lots #	Lot1: GK8381VX01			

Final Testing Information		
Electrical testing manufacturing location	ST Shenzhen (China)	

RR002612CT2235 Date of issue: August 3rd 2012 **Page: 5 of 13**

- 3. VNN7NV04P-E - Devices characteristics

3.1 Generalities


VNN7NV04P-E, VNS7NV04P-E

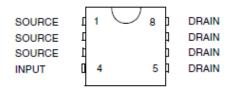
OMNIFET II fully autoprotected Power MOSFET

Features

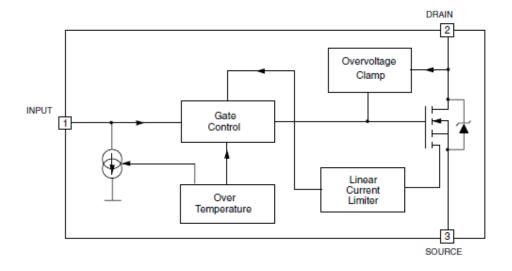
Туре	R _{DS(on)}	I _{lim}	V _{clamp}
VNN7NV04P-E VNS7NV04P-E	60 mΩ	6 A	40 V

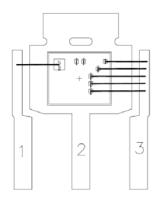
- Linear current limitation
- Thermal shutdown
- Short circuit protection
- Integrated clamp
- Low current drawn from input pin
- Diagnostic feedback through input pin
- ESD protection
- Direct access to the gate of the Power MOSFET (analog driving)
- Compatible with standard Power MOSFET in compliance with the 2002/95/EC European Directive

Description


The VNN7NV04P-E, VNS7NV04P-E, are monolithic devices designed in STMicroelectronics VIPower™ M0-3 Technology, intended for replacement of standard Power MOSFETs from DC up to 50 kHz applications. Built in thermal shutdown, linear current limitation and overvoltage clamp protect the chip in harsh environments.

Fault feedback can be detected by monitoring the voltage at the input pin.


RR002612CT2235 Date of issue: August 3rd 2012 **Page: 6 of 13**


3.2 Pins connection

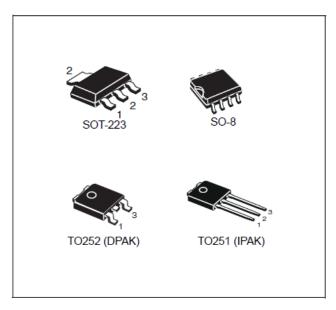
3.3 Blocks diagram

3.4 Bonding diagram

RR002612CT2235 Date of issue: August 3rd 2012 **Page: 7 of 13**

- 4. VNN3NV04P-E - Devices characteristics

4.1 Generalities


VNN3NV04, VNS3NV04 VND3NV04, VND3NV04-1

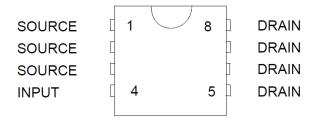
OMNIFET II fully autoprotected Power MOSFET

Features

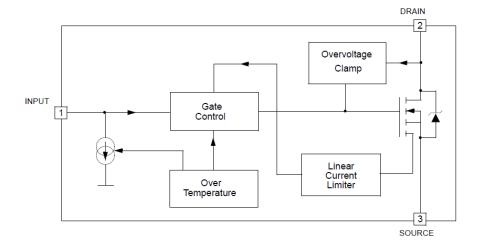
Туре	R _{DS(on)}	I _{lim}	V _{clamp}
VNN3NV04 VNS3NV04 VND3NV04 VND3NV04-1	120 mΩ	3.5 A	40 V

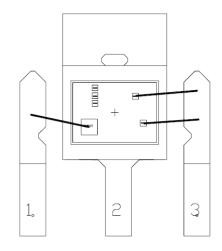
- Linear current limitation
- Thermal shutdown
- Short circuit protection
- Integrated clamp
- Low current drawn from input pin
- Diagnostic feedback through input pin
- ESD protection
- Direct access to the gate of the Power MOSFET (analog driving)
- Compatible with standard Power MOSFET in compliance with the 2002/95/EC European Directive

Description


The VNN3NV04, VNS3NV04, VND3NV04 VND3NV04-1, are monolithic devices designed in STMicroelectronics™ VIPower™ M0-3 Technology, intended for replacement of standard Power MOSFETs from DC up to 50 kHz applications. Built in thermal shutdown, linear current limitation and overvoltage clamp protect the chip in harsh environments.

Fault feedback can be detected by monitoring the voltage at the input pin.


RR002612CT2235 Date of issue: August 3rd 2012 **Page: 8 of 13**


4.2 Pins connection

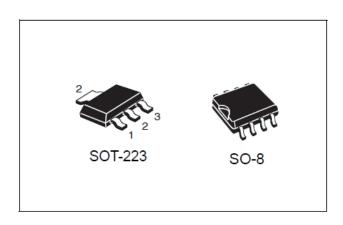
4.3 Blocks diagram

4.4 Bonding diagram

RR002612CT2235 Date of issue: August 3rd 2012 **Page: 9 of 13**

- 5. VNN1NV04P-E - Devices characteristics

5.1 Generalities

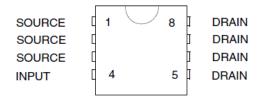

VNN1NV04P-E, VNS1NV04P-E

OMNIFET II fully autoprotected Power MOSFET

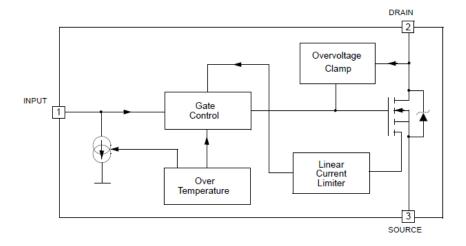
Features

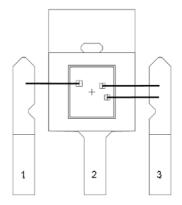
Parameter	Symbol	Value
Max on-state resistance (per ch.)	R _{ON}	250 mΩ
Current limitation (typ)	I _{LIMH}	1.7 A
Drain-source clamp voltage	V _{CLAMP}	40 V

- Linear current limitation
- Thermal shutdown
- Short circuit protection
- Integrated clamp
- Low current drawn from input pin
- Diagnostic feedback through input pin
- ESD protection
- Direct access to the gate of the Power MOSFET (analog driving)
- Compatible with standard Power MOSFET

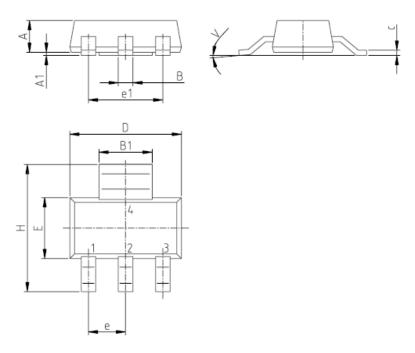

Description

The VNN1NV04P-E, VNS1NV04P-E are monolithic devices designed in STMicroelectronics VIPower M0-3 Technology, intended for replacement of standard Power MOSFETs from DC up to 50 kHz applications. Built in thermal shutdown, linear current limitation and overvoltage clamp protect the chip in harsh environments.


Fault feedback can be detected by monitoring the voltage at the input pin.


5.2 Pins connection

5.3 Blocks diagram


5.4 Bonding diagram

RR002612CT2235 Date of issue: August 3rd 2012 **Page: 11 of 13**

5.5 Package outline/Mechanical data

Dim.	mm.			inch		
Diiii.	Min.	Тур.	Max.	Min.	Тур.	Max.
Α			1.8			0.071
В	0.6	0.7	0.85	0.024	0.027	0.033
B1	2.9	3	3.15	0.114	0.118	0.124
С	0.24	0.26	0.35	0.009	0.01	0.014
D	6.3	6.5	6.7	0.248	0.256	0.264
е		2.3			0.09	
e1		4.6			0.181	
E	3.3	3.5	3.7	0.13	0.138	0.146
Н	6.7	7	7.3	0.264	0.276	0.287
٧		10° (max)				
A1	0.02		0.1	0.0008		0.004

RR002612CT2235 Date of issue: August 3rd 2012 **Page: 12 of 13**

- 6. Reliability qualification plan and results

AEC #	Test Name	STM Test Conditions	Sample Size/ Lots	Results Fails/SS/Lots	Comments
A1	PC Pre Cond	- Preconditioning according to level 3 Jedec JESD22-A113F - Reflow according to Jedec JSTD020D-1	Before THB, AC, TC, PTC, HTOL. Reliability executed on units soldered on PCB		
A2	THB Temp Humidity Bias	Ta=85°C, RH=85%, Vcc=24V for 1000 hours	77/3	0/77/3	
А3	AC Autoclave	Ta=121°C, Pa=2atm, RH=100% for 96 hours	77/3	0/77/3	
A4	TC Temp. Cycling	Ta=-65°C / +150°C for 500 cycles	77/3	0/77/3	
A5	PTC Power Temp. Cycling	Per JA105. Ta=-40°C / +125°C for 1000 cycles. Test before and after at room and hot temperatures.	45/1	0/45/1	
A6	HTSL High Temp. Storage Life	Ta=150°C for 1000 hours. TST before and after at room and hot temperatures.	45/3	0/45/3	
B1	HTOL High Temp. Op. Life	Bias Static stress (JESD22-A108): Ta= 150°C , Vcc=32V for 1000 hours	77/3	0/77/3	
C1	WBS Wire Bond Shear	Per AEC-Q100-001. See Appendix 3 procedure. 0 and Ppk >= 1.66 or Cpk >= 1.33	30 bonds from minimum 5 of units	Passed	
C2	WBP Wire Bond Pull	Per MIL-STD883, M2011 Condition C or D. 0 and Ppk >= 1.66 or Cpk >= 1.33	30 bonds from minimum 5 of units	Passed	
C3	SD Solderability		15/1	Passed	
C4	PD Physical Dimensions		10/3	Passed	
E8	GL Gate Leakage		6/1	Passed	

RR002612CT2235 Date of issue: August 3rd 2012 **Page: 13 of 13**

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners

© 2012 STMicroelectronics - All rights reserved.

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morroco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

